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I Many recent studies have investigated the role of syntactic and

semantic factors in listeners' comprehension of continuous speech.

The evidence is compelling and unambiguous in revealing the importance

of top-down processes in this situation (Cole, 1980). Despite this,

only recently have investigators examined the possibility that similar

j top-down processing occurs in the perception of some complex nonspeech

sound patterns. Everyday experience suggests that expectancies are

involved in our ability to decipher the variety of nonspeech stimuli

we encounter. More specialized listening skills can also be seen in

some individuals. For example, a sonar technician must identify the

I source and activity represented by the sounds recorded on passive

sonar hydrophones. Such sounds often occur in sequences or patterns

in which the temporal structure (sound order) can provide important

cues about what the source vessel may be doing (Howard & Ballas,

1980). Similarly, the technician's extensive knowledge of the sources

producing these sounds appears to influence his or her perceptual

capability. The present study reports two experiments which

I investigate the role of syntactic and semantic factors in the

classification of complex, nonspeech patterns.

Several investigators have presented evidence that top-down

j processing does occur for nonspeech stimuli (Deutsch, 1980; Howard &

Ballas, 1980; Bregman, 1981). For example, Bregman (1981) has
U demonstrated that listeners employ Gestalt rules or principles to

" segment acoustic information from different sources. He has referred

to this phenomenon as auditory streaming.

3 IResearch in our laboratory has suggested that listeners are able

.1
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to use both syntactic and semantic information in a relatively simple

auditory pattern classification task (Ballas & Howard, 1980; Howard &

Ballas, 1980). Four groups of listeners were required to classify

patterns of brief duration real-world sounds as "targets" or

"nontargets.u For the grammatical group target patterns were produced

using a simple finite-state rule structure or grammar to determine the

sequential order of the pattern components. In contrast, target

patterns for the nongrammatical group matched the grammatical patterns

in length, but were randomly constructed. As a result, the target set

for the latter, nongrammatical group lacked the overall coherence or

structure present in the grammatical target set.

In addition, each of the five pattern components was related to

water or steam (e.g., the squeak of a valve turning, steam hiss, water

flushing down a drain, etc.), and the finite-state grammar was

selected to produce only interpretable patterns. In other words, the

grammar reflected the temporal structure of possible real world

events. For example, one pattern might represent someone taking three

turns to open a valve that releases steam, which, in turn, causes

pipes to clang. Each of the grammatical patterns could be described

by a similar source scenario corresponding to events that might

actually occur. Although similar interpretations obviously can be

applied to some randomly constructed patterns, overall the

nongrammatical target patterns were only minimally interpretable. To

evaluate the role of semantic information in nonspeech pattern

classification, one-half of the participants in each of the two groups

were read a brief paragraph which suggested a theme for the patterns
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they would hear. The paragraph was general and did not identify any

3 specific patterns. The remaining individuals received no explicit

semantic information about the patterns.

Three findings were reported (Howard & Ballas, 1980). First,

listeners who classified the grammatical target patterns performed

substantially better than those who classified the unstructured or

random target patterns. Second, listeners in the grammatical group

who received semantic information performed at a higher level than

Ithose who did not receive this information. Third, the semantic

information did not enhance performance for listeners in the

nongrammatical group. On the contrary, there was some evidence that

the semantic information actually impaired performance for these

listeners. Overall, it was concluded that syntactic and semantic

factors interact to influence nonspeech pattern classification. The

two experiments reported in the present paper replicate (Experiment 1)

and extend (Experiment 2) these findings.

Experiment 1

In this experiment participants were required to classify

patterns of complex, water- and steam-related sounds. As in our

previous research some individuals received structured or grammatical

*target patterns whereas others received an unstructured or randomly

-- generated target set. One-half of the individuals in each condition

were read a general descriptive passage which suggested a water/steam

semantic context for the patterns they were to hear. The remaining

participants were given no explicit semantic information. Overall,

[
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the experiment is a replication of our earlier study; however, a

six-point rating scale procedure was employed to obtain a full

receiver operating characteristic (ROC) for each listener.

Method

Participants. Twenty student volunteers, five in each of four

groups, were paid to participate in the experiment.

Stimuli. Five brief-duration, "real-world" sounds were recorded

in our laboratory (a radiator valve being turned, water drip,

C broadband steam hiss, the clang of a metal object striking a radiator

pipe, and water flushing down a drain). The sounds were digitized

using standard signal processing techniques with a 10-bit

analog-to-digital converter at a 12.5 kHz sampling rate. Each sound

was 320 ms in duration with the exception of the water drip which was

82 ms long.

The grammatical target patterns were produced using the simple

finite-state grammar described in Howard & Ballas (1980, p. 432).

Twelve grammatical patterns ranging in length from four to six events

(three, four, and five patterns of each length, respectively) were

selected to make up the grammatical target category. A corresponding

nongrammatical target set was produced by randomly permuting the order

of pattern components in the grammatical target set. Consequently,

the nongrammatical targets matched the grammatical targets in length

and composition. Similarly, 48 randomly constructed nontarget

patterns were selected to be nonoverlapping with the target sets but

to match them in length. Each component was presented at a

comfortable listening level and the individual components were
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1 separated by 510 ms within the patterns.

Apparatus. All experimental events were controlled by aIi
general-purpose laboratory computer. The Acoustic patterns were

output on a 12-bit digital-to analog converter at a sampling rate of

12.5 kHz, low-pass filtered at 5 kHz (Khron-Hite Model 3550),

attenuated, and presented binaurally over matched Telephonics TDH-49

headphones with MX-41/AR cushions. Testing was done individually in a

sound-attenuated booth and listeners indicated their responses by

pressing buttons on a solid-state keyboard. A video display was also

located in the booth.

Procedure. Participants were told that they would be hearing

patterns of several sounds presented very quickly. They were told

that some of the patterns were designated as targets and that their

task would be to pick out the targets. Although the participants were

told that the targets and nontargets would occur equally often, no

information was provided regarding the composition of the target set.

The six point rating scale was also explained (1 = definitely a

nontarget, 2 = probably a nontarget, 3 = possibly a nontarget,

4 = possibly a target, 5 = probably a target, 6 = definitely a

target). Participants in the semantic conditions were also read the

following paragraph before beginning: "All of the individual sounds

relate to water and steam. You will hear such things as drips, water

4 flushing down a drain, a valve being turned on, steam escaping, and

7 radiator pipes clanging."

Each trial began when the word "LISTEN" appeared on the video

screen. A response prompt, the six scale descriptors, was presented

I
I ,
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immediately after the test pattern. The listener then responded by

pressing a key on the keypad (a digit between 11" and "6"), and verbal

feedback was presented visually following the response. After an

intertrial interval of 1.5 s, the screen was erased and the next trial

began. There were 96 trials in each test block, four presentations of

each of the 12 targets and 48 presentations of nontargets. Listeners

were tested for 12 blocks over three successive days.

Immediately after the last test block, listeners were told that

* the target patterns had been constructed using a set of rules--like

the rules of language. It was explained that they would be hearing a

new set of patterns and that their task would be to classify each

pattern using the six-point rating scale. They then completed an

additional block of 96 trials as before, but without feedback. The

grammatical patterns presented in this test block were produced by the

same finite-state grammar used for the grammatical target patterns;

however, they were not presented as targets previously. This block

was included to determine whether the participants could classify

novel grammatical patterns. The participants were interviewed and

debriefed before leaving.

Results & Discussion

A ROC function was determined from the rating-scale data for each

participant on each test block (Swets, 1979). A nonparametric,

response-bias-free index of performance was then computed by

determining the area under the ROC using a trapezoidal algorithm.

Mean areas were calculated for each condition by averaging

across individuals. The mean ROC area for each of the four groups is
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plotted by blocks in Figure 1.

Insert Figure 1 here

Consider first the effect of syntactic pattern structure on

classification performance. It is evident from Figure 1 that

participants in the two grammatical groups (mean ROC area = .81)

performed at a considerably higher level than did those in the two

nongrammatical groups (mean ROC area = .60). This finding is

consistent with our earlier result and indicates that individuals are

able to use the underlying temporal structure of target patterns to

facilitate classification.

The effect of semantic information is more subtle. In our

-previous experiment semantic information led to a slight, but

consistent overall improvement in classification performance for

individuals receiving structured target patterns. It is apparent from

Figure 1 that in the present experiment, overall performance is very

similar for the two grammatical groups (mean ROC areas of .82 and .80

-for the semantic and no-semantic conditions, respectively).

Nevertheless, it is interesting to note that on each of the first six

test blocks, individuals who were provided with explicit semantic

information outperformed those who received no explicit information.

I This trend is consistent with our previous finding. It suggests that

in the present experiment any effect of explicit semantic information

had disappeared by the seventh test block.

j Two explanations exist for this result. First, it Is possible
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that with experience individuals in the no-semantic condition were

able to develop their own labels and descriptive scenarios for the

target patterns. This hypothesis seems likely given the small number

of different sounds employed here (five) and the relative familiarity

of these sounds. Individuals in the semantic condition were provided

with an appropriate semantic framework for the patterns initially and

consequently began performance at a higher level. Second, it is also

possible that the convergence of the two groups reflects simple
C

artifact--a ceiling effect. Although theoretically, the ROC area can

reach a value of 1.00 with perfect performance, most individuals

showed surprisingly stable asymptotic performance across the final six

test blocks.

Another outcome of our previous experiment was that individuals

who classified unstructured target patterns did not benefit from the

explicit semantic information we provided. A similar finding is

evident for the nongrammatical groups in the present study. Mean

overall performance was very similar for the two groups (mean areas of

.59 and .61 for the semantic and no-semantic conditions,

respectively). Furthermore, inspection of Figure 1 reveals no

systematic differences between the two nongrammatical groups.

Mean ROC areas were also computed for the final test block on

which participants classified novel grammatical patterns without

feedback. The purpose of these trials was to determine if individuals

could generalize their knowledge of the target-pattern structure to

previously untested grammatical patterns. Both grammatical groups

performed substantially above the .50 chance level (mean ROC area of
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.73 and .87 for the semantic and no-semantic conditions,

respectively), whereas tl-e two nongrammatical groups responided at

chance level (mean ROC areas of .51 and .53 for the semantic and

no-semantic conditions, respectively). These findings are consistent

with our previous work and support the argument that participants in

the grammatical groups learn something about the underlying structure

of the target set during classification. That is, they learn

something more general than simple paired-associate responses to

individual patterns. Since individuals in the nongrammatical groups

were not exposed to structured target stimuli, it is obvious that they

would not be expected to perform any better than chance on this block.

Experiment 2

In general, the findings of Experiment 1 are consistent with our

earlier results (Howard & Ballas, 1980) in revealing that syntactic

and semantic factors interact in an important way to influence

classification performance for complex nonspeech patterns. The

grammatical and nongrammatical conditions investigated in Experiment

1, however, represent two extreme conditions. on the one hand, the

target patterns are both interpretable and have an underlying temporal

structure (grammatical conditions), whereas on the other hand the

target patterns were not interpretable nor did they have any -

underlying syntactic or temporal structure. Consequently, the

syntactic effects demonstrated in the previous experiment can bep

attributed either to pattern interpretability or to the presence of an

underlying temporal structure. In the present experiment, twoP
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additional conditions were tested to address this issue.

Specifically, grammatical target patterns were employed in a target

classification task, however, the patterns were constructed so as to

be generally uninterpretable. This was accomplished by permuting the

assignment of pattern component sounds to the output of the

finite-state grammar used in Experiment 1. In other words, the target

patterns were grammatically structured, but unlike those used in the

first experiment, they were not consistently interpretable. As

before, one-half the participants received general semantic

information regarding the sounds.

Method

Participants. Ten student volunteers, five in each of two

groups, were paid to participate in the experiment. No individual had

participated in the previous experiment.

Stimuli. The same five "real-world" sounds and finite-state

grammar used in Experiment 1 were used to produce the stimulus

patterns. The assignment of component sounds to the output codes

produced by the grammar was determined randomly to minimize

interpretability of the target patterns. The nontarget patterns were

generated as in Experiment 1.

Apparatus. Same as Experiment 1.

Procedure. Same as Experiment 1.

Results & Discussion

A ROC area was determined for each individual on each block as in

Experiment 1. The mean ROC area is plotted as a function of block for

the two semantic conditions in Figure 2.

7qq



PAGE 12

Insert Figure 2 here

Two results are evident in Figure 2. First, individuals in both

semantic information conditions showed a consistent improvement in

performance with practice. Indeed, their performance more closely

approximates that of the grammatical group in Figure 1 than that of

the nongrammatical group. The mean overall performance level observed

in this experiment (mean ROC area of .80) is virtually identical to

the mean performance level obtained for the grammatical group in

Experiment 1 (mean ROC area of .81). Since the target patterns

employed in the present experiment were structured, but interpretable,

this suggests that performance depends more on syntactic pattern

structure than on pattern interpretability per se.

Second, despite the similarities already noted, important

differences also exist between the present results and those of

Experiment 1. In particular, individuals in the no-semantic condition

outperformed those in the semantic condition on all but a single block

in the present experiment (block 5). This pattern differs from that

observed in our previous research (Howard & Ballas, 1980) and in

Experiment 1 for individuals classifying grammatically structured

targets. It appears that the general semantic information we provided

actually interfered with classification performance for structured,

but uninterpretable patterns. This result suggests that when working

with target patterns that are generally uninterpretable, specific

thematic information may inappropriately lead individuals to search

V
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for sensible interpretations of the patterns where none exist. This

misguided search may actually make the task more difficult. A similar

tendency for semantic information to impair performance with

uninterpretable, nongrammatical patterns was noted in our previous

research (Howard & Ballas, 1980).

Mean ROC areas were also computed for the last, no-feedback test

block with novel grammatical patterns. Individuals in both semantic

conditions performed considerably above chance as expected (mean ROC

areas of .77 and .81 for the semantic and no-semantic conditions,

respectively).

General Discussion

The results of the present experiments are consistent with our

earlier findings in revealing that both syntactic (sequential

structure) and semantic factors can play a role in nonspeech pattern

classification. In particular, Experiment 1 demonstrated that when

listeners are required to classify sequentially structured,

interpretable target patterns they are able to use this information to

facilitate the task. Furthermore, the results of Experiment 2 showed

similarly high performance for listeners who classified structured,

but minimally interpretable patterns. This suggests that pattern

structure rather than interpretability per se is largely responsible

for the enhanced performance observed in Experiment 1. The finding

that listeners in the structured or grammatical groups successfully

generalized their knowledge to classify novel grammatical patterns on

a post-experimental test block is consistent with the argument that
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listeners are able to learn general characteristics of the pattern

structure.

The present experiments also showed that explicit semantic

information can Jaad to enhanced classification performance--at least

on initial trials--when the target patterns are consistently

interpretable. On the other hand, when the target set is not

interpretable, explicit semantic information leads to no improvement

(Experiment 1) or to a performance decrement (Experiment 2). As

suggested in our earlier paper (Howard & Ballas, 1980), it is likely

that providing explicit semantic information leads listeners to search

for a consistent semantic interpretation for the target pattern set.

When no consistent interpretation exists, the classification task can

actually become more difficult.

In general, it is clear that further work is needed to clarify

the role of both syntactic and semantic factors in the perception of

complex nonspeech patterns. Such factors are likely to play an

important role in understanding the comprehension of everyday sounds

as well as specialized tasks such as that of the sonar technician.

I
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